
Advances in Computer Science and Information Technology (ACSIT) 
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016, pp. 444-447 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/Publication.html 
 
 

A Genetic Algorithm to Optimize  
Association Rules 
Munmun Kalita1 and Chitvan Gupta2 

1M.Tech Student, Department of CSE, Noida Institute of Engineering and Technology, Greater Noida, UP, Uttar Pradesh 
2Department of CSE, Noida Institute of Engineering And Technology, Greater Noida, UP, Uttar Pradesh 

E-mail: 1kalita.munmun75@gmail.com, 2chitvangupta@Gmail.Com 
 
 

Abstract—Data mining is synonymous with knowledge mining which 
means extraction of useful information from an existing dataset and 
transforms it into a flexible structure. Association rule mining is one 
of the most important tasks of data mining. It is the process of finding 
some relations among the attribute values of a large database. 
Genetic algorithms have found their strong base in mining 
Association Rules. Many researchers have proposed genetic 
algorithms for mining interesting rules from dataset. This paper 
provides an algorithm to optimized association rule using genetic 
algorithm. 

1. INTRODUCTION 

The process of discovering interesting and unexpected rules 
from large data sets is known as association rule mining. An 
association rule is an implication or if-then-rule which is 
supported by data. Mining of association rules is a field of 
data mining that has received a lot of attention in recent years 
[6]. Most of the association rule algorithms are based on 
methods proposed by Agrawal, Imielinski, and Swami [1] and 
Agrawal and Srikant [2], Apriori [1], SETM [1], AIS [1] 
etc.[7]. However, these algorithms have their limitations. 
Genetic algorithm is used in mining association rule to remove 
some of the limitations of the existing approaches [3]. GA is 
relatively simple, easy to implement and easy to use. 
Furthermore, it follows a database-independent approach 
which does not rely upon the minimum support and the 
minimum confidence thresholds which are hard to determine 
for each database. [4] 

The rest of this paper is organized as follows. In Section 2 an 
overview of the existing association rule mining techniques is 
provided. Section 3 provides an overview genetic algorithms. 
Section 4 covers the details of the proposed method. 
Implements and results are put in Section 5. Finally, Section 6 
includes the concluding remarks. 

2. ASSOCIATION RULE MINING (ARM). 

Principle of association rule mining (ARM) lies in the market 
basket or transaction data analysis. The major aim of ARM is 
to find the set of all subsets of items or attributes that 

frequently occur in many database records or transactions, and 
additionally, to extract rules on how a subset of items 
influences the presence of another subset. ARM algorithms 
discover high-level prediction rules in the form: IF the 
condition of the values of the predicting attributes are true, 
THEN predict values for some goal attributes. The task of 
mining association rules over market basket data was first 
introduced by Agrawal et al. [1]. 

Let I= {݅ଵ,݅ଶ,݅ଷ ..., ݅௠} be the set of database items and T={ 

 ,௠} be the set of transactions in the database, Dݐ,... ,ଶݐ ,ଵݐ
with each transaction ݐ௜ having a unique identifier and 
containing a set of items, called an itemset. An association 
rule is a conditional implication among itemsets, X→Y, where 

X and Y are itemsets and X ∩ Y = ∅. An itemset can be a 
single item or a set of items. An itemset with k items is called 
a k-itemset. A subset of k elements is called a k-subset.  

An association rule (AR) is called frequent if its support 
exceeds a minimum value min sup. The confidence of a rule X 
⇒ Y in T denotes the percentage of the transactions in T 
containing X that also contains Y. It is taken to be the 
conditional probability P(X|Y).  

That is, confidence(X ⇒ Y, T) = 
௦௨௣௣௢௥௧ሺ௑∪	௒,்ሻ

௦௨௣௣௢௥௧ሺ௑,்ሻ
  

A rule is called confident if its confidence value exceeds a 
threshold min_conf. . The ARM problem can be defined as 
follows. Find the set of all rules R of the formX ⇒ Y such that 

R = {X ⇒ Y|X, Y ⊂ I, X Y = ∅,X ∪Y ⊆ ݂(T, min sup),  

confidence(X ⇒ Y, T) > min conf}.  

Generally, the ARM process consists of the following two 
steps 

1) Find all frequent itemsets. 

2) Generate strong ARs from the frequent itemsets. 
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The number of itemsets grows exponentially with the number 
of items |I|. A commonly used algorithm for generating 
frequent itemsets is the apriori algorithm.[9,7,6] 

In the present work we have tried to optimize the association 
rule mining problem with a Pareto based genetic algorithm. At 
first the possible rules are represented as chromosomes, for 
which a suitable encoding/decoding scheme is required. For 
this, two approaches are available. In the Pittsburgh approach 
each chromosome represents a set of rules, and this approach 
is fit for classification rule mining, as we do not have to 
decode the consequent part and the length of the chromosome 
limits the number of rules generated. The other approach is 
known as the Michigan approach where each chromosome 
represents a separate rule. In the original Michigan approach 
we have to encode the antecedent and consequent parts 
separately; and thus this may be an efficient way from the 
point of space utilization since we have to store the empty 
conditions as we do not know from beginning which attributes 
will appear in which part. So a new approach will be followed 
where with each attribute we associate two extra tag bits. If 
these two bits are 00 then the attribute next to these two bits 
appears in the antecedent part and if it is 11 then the attribute 
appears in the consequent part. And the other two 
combinations, 01 and 10 will indicate the absence of the 
attribute in either of these parts. So the rule AEF->BC will 
look like 00A 11B 11C 01D 00E 00F. The next step is to find 
a suitable scheme for encoding/decoding the rules to/ from 
binary chromosomes. Since the positions of attributes are 
fixed, we need not store the name of the attributes. We have to 
encode the values of deferent attribute in the chromosome 
only. Another problem of the existing algorithms is that while 
generating the rules, the orders of the items also play an 
important role. In these algorithms, it is not possible to 
generate a rule of the following format, I1 I2 I6 I8 I10 I12 -> 
I4 I5 I9 (suffix indicates the order of appearance of the item in 
the binary database); though these relationships may be 
present inside the database. The proposed approach is free 
from this limitation. The next step is to find a suitable scheme 
for encoding/decoding the rules to/ from binary chromosomes. 
Since the positions of attributes are fixed, we need not store 
the name of the attributes. We have to encode the values of 
different attribute in the chromosome only. For encoding a 
categorical valued attribute, the market basket encoding 
scheme is used. This scheme is not suitable for numeric valued 
attributes. For a real valued attribute their binary 
representation can be used as the encoded value. The range of 
value of that attribute will control the number of bits used for 
it. Decoding will be simply the reverse of it. The length of the 
string will depend on the required accuracy of the value to be 
encoded.[3] 

3. OVERVIEW OF GENETIC ALGORITHM. 

The Genetic Algorithm was developed by John Holland in 
1970. GA is stochastic search algorithm modeled on the 
process of natural selection, which underlines biological 

evolution. GA works in an iterative manner by generating new 
populations of strings from old ones. Every string is the 
encoded binary, real etc., version of a candidate solution. An 
evaluation function associates a fitness measure to every string 
indicating its fitness for the problem.  

Chromosome: A chromosome (also sometimes called a 
genome) is a set of parameters which define a proposed 
solution to the problem that the genetic algorithm is trying to 
solve. The chromosome is often represented as a simple string; 
although a wide variety of other data structures are also used. 

Gene: A Gene is a part of chromosome. A gene contains a 
part of solution. For example if 162759 is a chromosome then 
1, 6, 2, 7, 5 and 9 are its genes. 

Fitness: Fitness (often denoted ω in population genetics 
models) is a central idea in evolutionary theory. It can be 
defined either with respect to a genotype or to a phenotype in 
a given environment. In either case, it describes the ability to 
both survive and reproduce, and is equal to the average 
contribution to the gene pool of the next generation that is 
made by an average individual of the specified genotype or 
phenotype. If differences between alleles at a given gene 
affect fitness, then the frequencies of the alleles will change 
over generations. 

Here the chromosomes are selected (using standard selection 
scheme, e.g. roulette wheel selection) using the fitness value. 
Fitness value is calculated using their ranks, which are 
calculated from the non-dominance property of the 
chromosomes. The ranking step tries to find the non-
dominated solutions, and those solutions are ranked as one. 
Among the rest of the chromosomes, if pi individuals dominate 
a chromosome then its rank is assigned as 1 + pi. This process 
continues till all the chromosomes are ranked. Then fitness is 
assigned to the chromosomes such that the chromosomes 
having the smallest rank gets the highest fitness and the 
chromosomes having the same rank gets the same fitness. 
After assigning the fitness to the chromosomes, selection, 
replacement, crossover and mutation operators are applied to 
get a new set of chromosomes. 

3.1 Outline of Basic Genetic Algorithm. 
1. Generate random population Pn of n chromosomes (suitable 
solutions for the problem). 
2. Evaluate the fitness f(x) of each chromosome x in the 
population.  
3. Create a new population Pn+1 by repeating following steps 
until the new population is completed. 
4. Compute fitness f (i) of each individual i of the population 
Pn. 

Fitness function is given by f(i)= S(A&C)/S(A) 

Where S(A) is number of insistences satisfying all the 
conditions in antecedent A and S(A&C) is Number of 
examples satisfying both antecedent A and consequence C . 
The metric measures predictive accuracy in terms of how 
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many cases both antecedent and consequence part hold out of 
all the cases where antecedent hold. 

5. Select two parent chromosomes from a population Pn 

according to their fitness (the better fitness, the bigger chance 
to be selected)  

6. With a crossover probability Pc cross over the parents to 
form a new offspring (children). If no crossover was 
performed, offspring is an exact copy of parents.  

7. With a mutation probability mutate new offspring at each 
locus (position in chromosome). 
Place new offspring in a population Pn+1.  

8. Use new generated population for a further run of 
algorithm.  

9. If the end condition is satisfied, stop, and return the best 
solution in current population  

10. Go to step 3. 

4. THE PROPOSED METHOD. 

The association rules are generated from the frequent itemsets 
generated in each generation .Those rule which satisfies the 
minimum support and minimum confidence are added to our 
list and rest are discarded. This process continues until the 
desired no of generation is not completed the whole algorithm 
can be summarized as follows: 

1. Select a suitable database that satisfies our requirements.  

2. Load a sample of records from the database that fits in the 
memory.  

3. Generate the set of frequent itemset by applying aprori 
algorithm on the selected record of the database based on 
minimum support and minimum confidence as specified by 
the user .Let I be the set of frequent itemset. 

4. Set B is the output set, which contains the association rule.  

5. For each chromosome i , compute P(i),where P(i) is 
probability of chromosome i .  

6. Represent each frequent item set of A as binary string using 
the combination of representation specified in section 3.  

7.Two members from the frequent item set are selected using 
Roulette Wheel sampling method based on their probability of 
selection ie P(i).  

ROULETTEWHEELSELECTION(r,sum,i)  

(1) let r = random number where 0 ≤ r < 1; sum := 0;  

(2)for each individual i 

(3)do sum := sum + P (choice = i);  

(4) if r < sum;  

(5)return i;  

(6)else goto step (2) 

8. Crossover and mutation operations are applied on the 
selected members to generate the association rules. 
9. Find the fitness function for each rule A C and check the 
following condition. 

I. if ( > Cmin) ,where Cmin is minimum confidence. 

II. Add the newly generated association rules to the set B 

10. If the desired number of generations is not completed, then 
go to Step 3. 

11. Stop 

5. IMPLEMENTATION AND RESULTS. 

Here we present the results on one supermarket transaction 
database having 16 attributes and 100 records. Crossover and 
mutation probabilities were taken respectively as 0.1 and 0.05; 
1 point crossover operator was used and the population size 
was kept fixed as 2 ie. in each generation 2 parents are 
selected using roulettes wheel selection method. Number of 
generations was fixed as 10. The rules are selected based on 
their fitness value.16 attributes, namely are 

Table 1: List of attributers of the data base 

Attribute ID 
MILK  I1 

BREAD  I2 
BUTTER  I3 

TEA  I4 
SUGAR  I5 
BEER  I6 
JAM  I7 

CORNFLAKES  I8 
COFFEE  I9 
CHEESE  I10 

BROWNBRAD  I11 
MEAT  I12 

CHOCOLATE  I13 
CAKE  I14 
COKE  I15 

FRUITS I16 
 
Frequent itemset is generated by apriori algorithm. Smin =10 
size of the frequent itemset is= 34. Our main goal is 
optimization. Again we know that data mining technique (with 
genetic algorithm) does not give the best solution, it gives 
optimal solution. Here we have selected rules with 
Cmin=10%. We also implemented apriori algorithm Using the 
same. Result are compared in the table below: 
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Table 2: Comparison of rules 

Apriori Algorithm Genatic algorithm
{MILK=>BREAD 
,SUGAR}/33.6 
{BREAD=>MILK,SUGAR}/5
8.4 
{SUGAR=>MILK,BREAD}/6
4 
{BREAD,SUGAR=>MILK}/9
1 
{MILK 
,SUGAR=>BREAD}100 
{MILK,BREAD=>SUGAR}/6
4 

{ BREAD SUGAR } => { 
MILK } /( 
Confidence:91.66666666666666
% ) 
{ SUGAR } => { MILK TEA }/ 
( 
Confidence:38.23529411764706
5% ) 
{ MILK TEA } => { SUGAR }/ 
( 
Confidence:92.85714285714288
% ) 
{ MILK } => { BREAD 
SUGAR }/ ( 
Confidence:22.44897959183673
2% ) 
{ MILK SUGAR } => { 
BREAD }/ ( 
Confidence:36.66666666666666
4% ) 
{ BREAD } => { MILK 
SUGAR } /( 
Confidence:20.75471698113207
4% ) 
{ MILK } => { CORNFLAKES 
}/ ( 
Confidence:36.73469387755102
4% ) 
{ MILK } => { TEA SUGAR }/ 
( 
Confidence:26.53061224489796
% ) 
{ MILK SUGAR } => { TEA }/ 
( 
Confidence:43.33333333333333
6% ) 
{ TEA SUGAR } => { MILK }/ 
( Confidence: 81.25% ) 
{ SUGAR } => { MILK 
BREAD }/ ( 
Confidence:32.35294117647059
% ) 
{ TEA } => { MILK SUGAR } 
/( 
Confidence:72.22222222222223
% ) 
{ MILK BREAD } => { 
SUGAR }/ ( 
Confidence:47.82608695652173
5% ) 
{ CORNFLAKES } => { MILK 
}/ ( 
Confidence:94.73684210526316
% ) 

 
In the above table we have shown a comparison of rule 
generated by apriori algorithm and genetic algorithm using the 
same dataset. With genetic algorithm we observed some 

surprising rules and the no of rules with Cmin also increases. 
So we can say that the rules we obtained by the proposed 
algorithm are optimized one. 

6. FUTURE SCOPE AND CONCLUSION. 

The extracted rules showed good consistency for the testing, 
training and validation period. The method describe here is 
very simple and efficient. To improve the efficiency of this 
algorithm, some refinement may be required. For example, 
this algorithm works on a sample of the original database, and 
the sample may not truly reflect the actual database. A perfect 
sample will improve the correctness of the rules generated by 
the algorithm.  
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