
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016, pp. 444-447
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

A Genetic Algorithm to Optimize
Association Rules
Munmun Kalita1 and Chitvan Gupta2

1M.Tech Student, Department of CSE, Noida Institute of Engineering and Technology, Greater Noida, UP, Uttar Pradesh
2Department of CSE, Noida Institute of Engineering And Technology, Greater Noida, UP, Uttar Pradesh

E-mail: 1kalita.munmun75@gmail.com, 2chitvangupta@Gmail.Com

Abstract—Data mining is synonymous with knowledge mining which
means extraction of useful information from an existing dataset and
transforms it into a flexible structure. Association rule mining is one
of the most important tasks of data mining. It is the process of finding
some relations among the attribute values of a large database.
Genetic algorithms have found their strong base in mining
Association Rules. Many researchers have proposed genetic
algorithms for mining interesting rules from dataset. This paper
provides an algorithm to optimized association rule using genetic
algorithm.

1. INTRODUCTION

The process of discovering interesting and unexpected rules
from large data sets is known as association rule mining. An
association rule is an implication or if-then-rule which is
supported by data. Mining of association rules is a field of
data mining that has received a lot of attention in recent years
[6]. Most of the association rule algorithms are based on
methods proposed by Agrawal, Imielinski, and Swami [1] and
Agrawal and Srikant [2], Apriori [1], SETM [1], AIS [1]
etc.[7]. However, these algorithms have their limitations.
Genetic algorithm is used in mining association rule to remove
some of the limitations of the existing approaches [3]. GA is
relatively simple, easy to implement and easy to use.
Furthermore, it follows a database-independent approach
which does not rely upon the minimum support and the
minimum confidence thresholds which are hard to determine
for each database. [4]

The rest of this paper is organized as follows. In Section 2 an
overview of the existing association rule mining techniques is
provided. Section 3 provides an overview genetic algorithms.
Section 4 covers the details of the proposed method.
Implements and results are put in Section 5. Finally, Section 6
includes the concluding remarks.

2. ASSOCIATION RULE MINING (ARM).

Principle of association rule mining (ARM) lies in the market
basket or transaction data analysis. The major aim of ARM is
to find the set of all subsets of items or attributes that

frequently occur in many database records or transactions, and
additionally, to extract rules on how a subset of items
influences the presence of another subset. ARM algorithms
discover high-level prediction rules in the form: IF the
condition of the values of the predicting attributes are true,
THEN predict values for some goal attributes. The task of
mining association rules over market basket data was first
introduced by Agrawal et al. [1].

Let I= {݅ଵ,݅ଶ,݅ଷ ..., ݅௠} be the set of database items and T={

 ,௠} be the set of transactions in the database, Dݐ,... ,ଶݐ ,ଵݐ
with each transaction ݐ௜ having a unique identifier and
containing a set of items, called an itemset. An association
rule is a conditional implication among itemsets, X→Y, where

X and Y are itemsets and X ∩ Y = ∅. An itemset can be a
single item or a set of items. An itemset with k items is called
a k-itemset. A subset of k elements is called a k-subset.

An association rule (AR) is called frequent if its support
exceeds a minimum value min sup. The confidence of a rule X
⇒ Y in T denotes the percentage of the transactions in T
containing X that also contains Y. It is taken to be the
conditional probability P(X|Y).

That is, confidence(X ⇒ Y, T) =
௦௨௣௣௢௥௧ሺ௑∪	௒,்ሻ

௦௨௣௣௢௥௧ሺ௑,்ሻ

A rule is called confident if its confidence value exceeds a
threshold min_conf. . The ARM problem can be defined as
follows. Find the set of all rules R of the formX ⇒ Y such that

R = {X ⇒ Y|X, Y ⊂ I, X Y = ∅,X ∪Y ⊆ ݂(T, min sup),

confidence(X ⇒ Y, T) > min conf}.

Generally, the ARM process consists of the following two
steps

1) Find all frequent itemsets.

2) Generate strong ARs from the frequent itemsets.

A Genetic Algorithm to Optimize Association Rules 445

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016

The number of itemsets grows exponentially with the number
of items |I|. A commonly used algorithm for generating
frequent itemsets is the apriori algorithm.[9,7,6]

In the present work we have tried to optimize the association
rule mining problem with a Pareto based genetic algorithm. At
first the possible rules are represented as chromosomes, for
which a suitable encoding/decoding scheme is required. For
this, two approaches are available. In the Pittsburgh approach
each chromosome represents a set of rules, and this approach
is fit for classification rule mining, as we do not have to
decode the consequent part and the length of the chromosome
limits the number of rules generated. The other approach is
known as the Michigan approach where each chromosome
represents a separate rule. In the original Michigan approach
we have to encode the antecedent and consequent parts
separately; and thus this may be an efficient way from the
point of space utilization since we have to store the empty
conditions as we do not know from beginning which attributes
will appear in which part. So a new approach will be followed
where with each attribute we associate two extra tag bits. If
these two bits are 00 then the attribute next to these two bits
appears in the antecedent part and if it is 11 then the attribute
appears in the consequent part. And the other two
combinations, 01 and 10 will indicate the absence of the
attribute in either of these parts. So the rule AEF->BC will
look like 00A 11B 11C 01D 00E 00F. The next step is to find
a suitable scheme for encoding/decoding the rules to/ from
binary chromosomes. Since the positions of attributes are
fixed, we need not store the name of the attributes. We have to
encode the values of deferent attribute in the chromosome
only. Another problem of the existing algorithms is that while
generating the rules, the orders of the items also play an
important role. In these algorithms, it is not possible to
generate a rule of the following format, I1 I2 I6 I8 I10 I12 ->
I4 I5 I9 (suffix indicates the order of appearance of the item in
the binary database); though these relationships may be
present inside the database. The proposed approach is free
from this limitation. The next step is to find a suitable scheme
for encoding/decoding the rules to/ from binary chromosomes.
Since the positions of attributes are fixed, we need not store
the name of the attributes. We have to encode the values of
different attribute in the chromosome only. For encoding a
categorical valued attribute, the market basket encoding
scheme is used. This scheme is not suitable for numeric valued
attributes. For a real valued attribute their binary
representation can be used as the encoded value. The range of
value of that attribute will control the number of bits used for
it. Decoding will be simply the reverse of it. The length of the
string will depend on the required accuracy of the value to be
encoded.[3]

3. OVERVIEW OF GENETIC ALGORITHM.

The Genetic Algorithm was developed by John Holland in
1970. GA is stochastic search algorithm modeled on the
process of natural selection, which underlines biological

evolution. GA works in an iterative manner by generating new
populations of strings from old ones. Every string is the
encoded binary, real etc., version of a candidate solution. An
evaluation function associates a fitness measure to every string
indicating its fitness for the problem.

Chromosome: A chromosome (also sometimes called a
genome) is a set of parameters which define a proposed
solution to the problem that the genetic algorithm is trying to
solve. The chromosome is often represented as a simple string;
although a wide variety of other data structures are also used.

Gene: A Gene is a part of chromosome. A gene contains a
part of solution. For example if 162759 is a chromosome then
1, 6, 2, 7, 5 and 9 are its genes.

Fitness: Fitness (often denoted ω in population genetics
models) is a central idea in evolutionary theory. It can be
defined either with respect to a genotype or to a phenotype in
a given environment. In either case, it describes the ability to
both survive and reproduce, and is equal to the average
contribution to the gene pool of the next generation that is
made by an average individual of the specified genotype or
phenotype. If differences between alleles at a given gene
affect fitness, then the frequencies of the alleles will change
over generations.

Here the chromosomes are selected (using standard selection
scheme, e.g. roulette wheel selection) using the fitness value.
Fitness value is calculated using their ranks, which are
calculated from the non-dominance property of the
chromosomes. The ranking step tries to find the non-
dominated solutions, and those solutions are ranked as one.
Among the rest of the chromosomes, if pi individuals dominate
a chromosome then its rank is assigned as 1 + pi. This process
continues till all the chromosomes are ranked. Then fitness is
assigned to the chromosomes such that the chromosomes
having the smallest rank gets the highest fitness and the
chromosomes having the same rank gets the same fitness.
After assigning the fitness to the chromosomes, selection,
replacement, crossover and mutation operators are applied to
get a new set of chromosomes.

3.1 Outline of Basic Genetic Algorithm.
1. Generate random population Pn of n chromosomes (suitable
solutions for the problem).
2. Evaluate the fitness f(x) of each chromosome x in the
population.
3. Create a new population Pn+1 by repeating following steps
until the new population is completed.
4. Compute fitness f (i) of each individual i of the population
Pn.

Fitness function is given by f(i)= S(A&C)/S(A)

Where S(A) is number of insistences satisfying all the
conditions in antecedent A and S(A&C) is Number of
examples satisfying both antecedent A and consequence C .
The metric measures predictive accuracy in terms of how

Munmun Kalita and Chitvan Gupta

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016

446

many cases both antecedent and consequence part hold out of
all the cases where antecedent hold.

5. Select two parent chromosomes from a population Pn

according to their fitness (the better fitness, the bigger chance
to be selected)

6. With a crossover probability Pc cross over the parents to
form a new offspring (children). If no crossover was
performed, offspring is an exact copy of parents.

7. With a mutation probability mutate new offspring at each
locus (position in chromosome).
Place new offspring in a population Pn+1.

8. Use new generated population for a further run of
algorithm.

9. If the end condition is satisfied, stop, and return the best
solution in current population

10. Go to step 3.

4. THE PROPOSED METHOD.

The association rules are generated from the frequent itemsets
generated in each generation .Those rule which satisfies the
minimum support and minimum confidence are added to our
list and rest are discarded. This process continues until the
desired no of generation is not completed the whole algorithm
can be summarized as follows:

1. Select a suitable database that satisfies our requirements.

2. Load a sample of records from the database that fits in the
memory.

3. Generate the set of frequent itemset by applying aprori
algorithm on the selected record of the database based on
minimum support and minimum confidence as specified by
the user .Let I be the set of frequent itemset.

4. Set B is the output set, which contains the association rule.

5. For each chromosome i , compute P(i),where P(i) is
probability of chromosome i .

6. Represent each frequent item set of A as binary string using
the combination of representation specified in section 3.

7.Two members from the frequent item set are selected using
Roulette Wheel sampling method based on their probability of
selection ie P(i).

ROULETTEWHEELSELECTION(r,sum,i)

(1) let r = random number where 0 ≤ r < 1; sum := 0;

(2)for each individual i

(3)do sum := sum + P (choice = i);

(4) if r < sum;

(5)return i;

(6)else goto step (2)

8. Crossover and mutation operations are applied on the
selected members to generate the association rules.
9. Find the fitness function for each rule A C and check the
following condition.

I. if (> Cmin) ,where Cmin is minimum confidence.

II. Add the newly generated association rules to the set B

10. If the desired number of generations is not completed, then
go to Step 3.

11. Stop

5. IMPLEMENTATION AND RESULTS.

Here we present the results on one supermarket transaction
database having 16 attributes and 100 records. Crossover and
mutation probabilities were taken respectively as 0.1 and 0.05;
1 point crossover operator was used and the population size
was kept fixed as 2 ie. in each generation 2 parents are
selected using roulettes wheel selection method. Number of
generations was fixed as 10. The rules are selected based on
their fitness value.16 attributes, namely are

Table 1: List of attributers of the data base

Attribute ID
MILK I1

BREAD I2
BUTTER I3

TEA I4
SUGAR I5
BEER I6
JAM I7

CORNFLAKES I8
COFFEE I9
CHEESE I10

BROWNBRAD I11
MEAT I12

CHOCOLATE I13
CAKE I14
COKE I15

FRUITS I16

Frequent itemset is generated by apriori algorithm. Smin =10
size of the frequent itemset is= 34. Our main goal is
optimization. Again we know that data mining technique (with
genetic algorithm) does not give the best solution, it gives
optimal solution. Here we have selected rules with
Cmin=10%. We also implemented apriori algorithm Using the
same. Result are compared in the table below:

A Genetic Algorithm to Optimize Association Rules 447

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 5; July-September, 2016

Table 2: Comparison of rules

Apriori Algorithm Genatic algorithm
{MILK=>BREAD
,SUGAR}/33.6
{BREAD=>MILK,SUGAR}/5
8.4
{SUGAR=>MILK,BREAD}/6
4
{BREAD,SUGAR=>MILK}/9
1
{MILK
,SUGAR=>BREAD}100
{MILK,BREAD=>SUGAR}/6
4

{ BREAD SUGAR } => {
MILK } /(
Confidence:91.66666666666666
%)
{ SUGAR } => { MILK TEA }/
(
Confidence:38.23529411764706
5%)
{ MILK TEA } => { SUGAR }/
(
Confidence:92.85714285714288
%)
{ MILK } => { BREAD
SUGAR }/ (
Confidence:22.44897959183673
2%)
{ MILK SUGAR } => {
BREAD }/ (
Confidence:36.66666666666666
4%)
{ BREAD } => { MILK
SUGAR } /(
Confidence:20.75471698113207
4%)
{ MILK } => { CORNFLAKES
}/ (
Confidence:36.73469387755102
4%)
{ MILK } => { TEA SUGAR }/
(
Confidence:26.53061224489796
%)
{ MILK SUGAR } => { TEA }/
(
Confidence:43.33333333333333
6%)
{ TEA SUGAR } => { MILK }/
(Confidence: 81.25%)
{ SUGAR } => { MILK
BREAD }/ (
Confidence:32.35294117647059
%)
{ TEA } => { MILK SUGAR }
/(
Confidence:72.22222222222223
%)
{ MILK BREAD } => {
SUGAR }/ (
Confidence:47.82608695652173
5%)
{ CORNFLAKES } => { MILK
}/ (
Confidence:94.73684210526316
%)

In the above table we have shown a comparison of rule
generated by apriori algorithm and genetic algorithm using the
same dataset. With genetic algorithm we observed some

surprising rules and the no of rules with Cmin also increases.
So we can say that the rules we obtained by the proposed
algorithm are optimized one.

6. FUTURE SCOPE AND CONCLUSION.

The extracted rules showed good consistency for the testing,
training and validation period. The method describe here is
very simple and efficient. To improve the efficiency of this
algorithm, some refinement may be required. For example,
this algorithm works on a sample of the original database, and
the sample may not truly reflect the actual database. A perfect
sample will improve the correctness of the rules generated by
the algorithm.

REFERENCES

[1] Agrawal, R., Imielinski, T., & Swami, A. (1993). "Mining association
rules between sets of items in large databases." In Proceedings of
ACM SIGMOD conference on management of data (pp. 207–216)

[2] Agrawal, R., & Srikant, R. (1994). "Fast algorithms for mining
association rules". In Proceedings of the 20th international
conference on very large databases, Santiago, Chile.

[3] A. Ghosh and B. Nath, “Multi-objective rule mining using genetic
algorithms,” Inf. Sci., vol. 163, nos. 1–3, pp. 123–133, Jun. 2004.

[4] Alatas B, Akin E, Karci A (2008) "MODENAR: multi-objective
differential evolution algorithm for mining numeric association
rules". Appl Soft Comput 8(1):646–656

[5] Peter P. Wakabi-Waiswa,Venansius Baryamureeba, "Extraction of
interestiong association rules using genetic algorithms, International
Journal of Computing and ICT Research", Vol. 2 No. 1, June 2008.

[6] Soumadip Ghosh, Sushanta Biswas, Debasree Sarkar, Partha Pratim
Sarkar, "International Journal of Artificial Intelligence &
Applications (IJAIA)", Vol.1, No.4, October 2010.

[7] Hamid Reza Qodmanan, Mahdi Nasiri, Behrouz Minaei-Bidgoli,
"Multi objective association rule mining with genetic algorithm
without specifying minimum support and minimum confidence",
2010 Elsevier Ltd.

[8] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra
Bandyopadhyay, and Carlos Artemio Coello Coello, "Survey of
Multiobjective Evolutionary Algorithms for Data Mining: Part I",
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
VOL. 18, NO. 1, FEBRUARY 2014.

[9] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra
Bandyopadhyay, and Carlos Artemio Coello Coello, "Survey of
Multiobjective Evolutionary Algorithms for Data Mining: Part II",
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,
VOL. 18, NO. 1, FEBRUARY 2014.

[10] M. Khabzaoui, C. Dhaenens, and E.-G. Talbi, "Combining
evolutionary algorithms and exact approaches for multiobjective
knowledge discovery", RAIRO—Oper. Res., vol. 42, no. 1, pp. 69–83,
2008.

[11] M. Martínez-Ballesteros, A. Troncoso, F. Martínez-Álvarez, J. C.
Riquelme1, "Improving a multi-objective evolutionary algorithm to
discover quantitative association rules", Springer-Verlag London
2015

[12] M. Kaya and R. Alhajj, "Facilitating fuzzy association rules mining
by using multiobjective genetic algorithms for automated clustering",
in Proc. 3rd IEEE ICDM, 2003, pp. 561–564.

[13] S. G. Matthews, M. A. Gongora, and A. A. Hopgood, “Evolving
temporal fuzzy association rules from quantitative data with a
multiobjective evolutionary algorithm,” in Proc. Int. Conf. HAIS—
Vol. Part I, 2011, pp. 198–205.

